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Designing concurrent systems

m Systems contain many interacting components Z S

a'e
m Need to handle complexity
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Model-based coordination framework: JavaBIP
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Designing concurrent systems

Systems contain many interacting components Z S

Need to handle complexity

Model-based coordination framework: JavaBIP

Separate interaction & implementation
Weakness: assumptions are not checked

Solution: combine JavaBIP & VerCors I]I]
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m Using contracts W
m Deductive & runtime verification
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Outline

Model-based coordination framework: JavaBIP

Deductive verification: VerCors

JavaBIP + VerCors = Verified JavaBIP

Casino case study
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Model-based coordination framework: JavaBIP
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JavaBIP model: example

Model = interacting components
interaction = simultaneously execute transitions
component = class

transition = method + start & end state
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JavaBIP model: example
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Model

interaction

component

@Component (initial=IDLE,

transition

interacting components

simultaneously execute transitions

class
method + start & end state

class CoffeeMachineDisplay {
@Transition (
name=SHOW_COFFEE_MSG,
source=IDLE,
target=SHOW_PROGRESS)
void showCoffeeMessage () {

System.out.println("Dispensing coffee");

}
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Deductive verification: VerCors
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m Auto-active deductive verifier

m Supports concurrent Java, C, PVL

m Contract specifications: pre- and postconditions
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//@
//@
//@
//@

int

: contract example

requires 0 <= r && r <=
requires 0 <= g && g <=
requires 0 <= b && b <=
ensures 0 <= \result &&
averagePixel (int r, int

return (r + g + b) / 3;

}
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g, int b) {
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JavaBIP 4 VerCors = Verified JavaBIP
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Verified JavaBIP: workflow

@ Safe execution

JavaBIP

Engine
@ Runtime specification error
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Verified JavaBIP

7\

@ Safe execution

JavaBIP
Engine

@ Runtime specification error
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Verified JavaBIP: workflow

@ Safe execution

JavaBIP

Engine
@ Runtime specification error
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JavaBIP: original annotations

1
2
3
4
5
6
7

@Component (initial=IDLE, name=MYCOMPONENT_SPEC)
class MyComponent {
@Transition (
name=MY_TRANSITION,
source=S,
target=T)
void myTransition ()
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Verified JavaBIP: extended with contracts

1
2
3
4
5
6
7
8
9

@Component (initial=IDLE, name=MYCOMPONENT_SPEC)
@StatePredicate(state=IDLE, expr="I") // <---
class MyComponent {
@Transition (
name=MY_TRANSITION,
source=S,
target=T,
requires="P", // <--
ensures="Q") // <--
void myTransition ()

[y
o

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 12/19



Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 13/19



Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results
m Detect model assumption violations at runtime

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 13/19



Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results
m Detect model assumption violations at runtime

© Guarantee safety at runtime
© Speed up prototyping of contracts
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Casino case study
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Casino case study

m Case study based on VerifyThis Long Term Challenge
m Original program: solidity casino smart contract

m Rewritten as JavaBIP model

W.E LCOM.E
" 10 Falbulous
LAS CONTRACT..

BLOCKCHAIN

(c) https://verifythis.github.io
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Casino case study: general structure

m Casino:

m Takes bets

m Pays out on correct guesses
m Operator

m Owns casino

m adds/withdraws money from casino balance
m Player:

m Uses casino
m Place bets
m Lose/win money
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Casino case study: problem

(disagreement)

Operator
Operator purse: O Operator purse: 100
> >
Casino balance: 100 Casino balance: -50
Casino
-» Casino balance: 50 » Casino balance: -50
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Casino case study: solution

(disagreement)

Operator
Operator purse: O
>
Casino balance: 100
Casino
-» Casino balance: 50
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Conclusion

m Model-based coordination frameworks use unchecked assumptions
m Contracts facilitate combination of JavaBIP with VerCors to:

m Verify JavaBIP models deductively
m Check contracts at runtime
m Optimize away runtime checks

m Casino case study to illustrate tool
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Interaction specification

In JavaBIP initialization, likely in main()

// Synchronize exclusively:
synchron(Casino.class, RECEIVE_BET)
.to(Player.class, PLACE_BET);

// Requires any of:

port (Operator.class, DECIDE_BET)
.requires (Casino.class, CASINO_WIN);

// Accepts only of:

port (Casino.class, CASINO_WIN)
.accepts(Operator.class, DECIDE_BET);

© 0 ~N O a0 B W N -
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// Data flow
data (Operator.class, OUTGOING_FUNDS)
14 .to(Casino.class, INCOMING_FUNDS);

_
w
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Casino case study: problem (4 data)

Operator

Operator purse: O ®

Operator purse: 100

- Casino balance: 100 >
l Casino balance: -50
! Will withdraw: 100 X
. Will withdraw: 100
S
=
3
&,
RUNN Actual balance: 50
S
. Casino ® v
“» Casino balance: 50 » Casino balance: -50
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VerCors vs. JavaBIP

VerCors
Strong points:

m Analyze data

m No assumptions

Weak points:
m Only local analysis

m No partial analysis

JavaBIP
Strong points:

m Design system-wide behaviour

m Partial execution

Weak points:
m Little data reasoning

m Assumptions
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Verified JavaBIP: implementation

m In VerCors:
Parse Verified JavaBIP annotations
Encode contracts using JavaBIP semantics into COL
Verify COL program
Translate back any errors to input
Produce verification report
m In the JavaBIP engine:

Parse Verified JavaBIP annotations
If supplied, import verification report
Runtime verification

m Check non-verified properties at points of interest
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