JavaBIP meets VerCors

Towards the Safety of Concurrent Software Systems in Java

Simon Bliudze, Petra van den Bos, Marieke Huisman,
Robert! Rubbens, Larisa Safina

March 30th, 2023

Formal e
unvers™ Frh LM o

1(Bob)

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 1/

Designing concurrent systems

m Systems contain many interacting components Z S

a'e
m Need to handle complexity
'.”@%

{3

(o]

M

I

(c) Mohamed Mb, M.

Tohirin, Marissa Coffey

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 2/19

Designing concurrent systems

Systems contain many interacting components Z S

Need to handle complexity
Model-based coordination framework: JavaBIP
Separate interaction & implementation ® @

I

N

9| 33

(o]

M

I

(c) Mohamed Mb, M.

Tohirin, Marissa Coffey

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 2/19

Designing concurrent systems

Systems contain many interacting components Z S

Need to handle complexity

Model-based coordination framework: JavaBIP

Separate interaction & implementation
Weakness: assumptions are not checked

Solution: combine JavaBIP & VerCors I]I]

N

{3

m Using contracts W
m Deductive & runtime verification

0%

(c) Mohamed Mb, M.

Tohirin, Marissa Coffey

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 2/19

Outline

Model-based coordination framework: JavaBIP

Deductive verification: VerCors

JavaBIP + VerCors = Verified JavaBIP

Casino case study

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 3/19

Model-based coordination framework: JavaBIP

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 4/19

JavaBIP model: example

Model = interacting components
interaction = simultaneously execute transitions
component = class

transition = method + start & end state

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 5/19

JavaBIP model: example

© 00 N O o b W N =

—
o

Model

interaction

component

@Component (initial=IDLE,

transition

interacting components

simultaneously execute transitions

class
method + start & end state

class CoffeeMachineDisplay {
@Transition (
name=SHOW_COFFEE_MSG,
source=IDLE,
target=SHOW_PROGRESS)
void showCoffeeMessage () {

System.out.println("Dispensing coffee");

}

Bliudze et al.

JavaBIP meets VerCors

name=DISPLAY_SPEC)

March 30th, 2023

5/

19

Deductive verification: VerCors

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 6/19

m Auto-active deductive verifier

m Supports concurrent Java, C, PVL

m Contract specifications: pre- and postconditions

Code —

A4

Pass @

R

Spec —

A4

Fail ®

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 7/19

~N o o B~ W N

//@
//@
//@
//@

int

: contract example

requires 0 <= r && r <=
requires 0 <= g && g <=
requires 0 <= b && b <=
ensures 0 <= \result &&
averagePixel (int r, int

return (r + g + b) / 3;

}

Bliudze et al. JavaBIP meets VerCors

255;

255;

255;

\result <= 255;
g, int b) {

March 30th, 2023 8/

JavaBIP 4 VerCors = Verified JavaBIP

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 9/19

Verified JavaBIP: workflow

@ Safe execution

JavaBIP

Engine
@ Runtime specification error

Bliudze et al. JavaBIP meets VerCors March 30th, 2023

Verified JavaBIP

7\

@ Safe execution

JavaBIP
Engine

@ Runtime specification error

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 10/19

Verified JavaBIP: workflow

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 10/19

Verified JavaBIP: workflow

@ Safe execution

JavaBIP

Engine
@ Runtime specification error

Bliudze et al. JavaBIP meets VerCors March 30th, 2023

JavaBIP: original annotations

1
2
3
4
5
6
7

@Component (initial=IDLE, name=MYCOMPONENT_SPEC)
class MyComponent {
@Transition (
name=MY_TRANSITION,
source=S,
target=T)
void myTransition ()

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 11/19

Verified JavaBIP: extended with contracts

1
2
3
4
5
6
7
8
9

@Component (initial=IDLE, name=MYCOMPONENT_SPEC)
@StatePredicate(state=IDLE, expr="I") // <---
class MyComponent {
@Transition (
name=MY_TRANSITION,
source=S,
target=T,
requires="P", // <--
ensures="Q") // <--
void myTransition ()

[y
o

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 12/19

Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 13/19

Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results
m Detect model assumption violations at runtime

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 13/19

Verified JavaBIP: benefits

m Check model assumptions deductively
© Optimize runtime verification by reusing partial verification results
m Detect model assumption violations at runtime

© Guarantee safety at runtime
© Speed up prototyping of contracts

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 13/19

Casino case study

Bliudze et al. JavaBIP meets VerCors March 30th, 2023

Casino case study

m Case study based on VerifyThis Long Term Challenge
m Original program: solidity casino smart contract

m Rewritten as JavaBIP model

W.E LCOM.E
" 10 Falbulous
LAS CONTRACT..

BLOCKCHAIN

(c) https://verifythis.github.io

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 15/19

Casino case study: general structure

m Casino:

m Takes bets

m Pays out on correct guesses
m Operator

m Owns casino

m adds/withdraws money from casino balance
m Player:

m Uses casino
m Place bets
m Lose/win money

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 16 /19

Casino case study: problem

(disagreement)

Operator
Operator purse: O Operator purse: 100
> >
Casino balance: 100 Casino balance: -50
Casino
-» Casino balance: 50 » Casino balance: -50

Bliudze et al.

JavaBIP meets VerCors

March 30th, 2023

17/19

Casino case study: solution

(disagreement)

Operator
Operator purse: O
>
Casino balance: 100
Casino
-» Casino balance: 50

Bliudze et al. JavaBIP meets VerCors

March 30th, 2023

Conclusion

m Model-based coordination frameworks use unchecked assumptions
m Contracts facilitate combination of JavaBIP with VerCors to:

m Verify JavaBIP models deductively
m Check contracts at runtime
m Optimize away runtime checks

m Casino case study to illustrate tool

Bliudze et al. JavaBIP meets VerCors March 30th, 2023

http://doi.org/10.1007/978-3-031-30826-0_8
mailto://r.b.rubbens@utwente.nl
http://doi.org/10.1007/978-3-031-30826-0_8

Conclusion

m Model-based coordination frameworks use unchecked assumptions
m Contracts facilitate combination of JavaBIP with VerCors to:

m Verify JavaBIP models deductively
m Check contracts at runtime
m Optimize away runtime checks

m Casino case study to illustrate tool

Paper: JavaBIP meets VerCors: Towards the Safety of Concurrent
Software Systems in Java
DOI: 10.1007/978-3-031-30826-0_8

Robert Rubbens E E

4F
Formal Methods & Tools, University of Twente

r.b.rubbens@utwente.nl

[=]%

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 19/19

http://doi.org/10.1007/978-3-031-30826-0_8
mailto://r.b.rubbens@utwente.nl
http://doi.org/10.1007/978-3-031-30826-0_8

Bonus slides

Bliudze et al. JavaBIP meets VerCors March 30th, 2!

Interaction specification

In JavaBIP initialization, likely in main()

// Synchronize exclusively:
synchron(Casino.class, RECEIVE_BET)
.to(Player.class, PLACE_BET);

// Requires any of:

port (Operator.class, DECIDE_BET)
.requires (Casino.class, CASINO_WIN);

// Accepts only of:

port (Casino.class, CASINO_WIN)
.accepts(Operator.class, DECIDE_BET);

© 0 ~N O a0 B W N -

[~ S
N = O

// Data flow
data (Operator.class, OUTGOING_FUNDS)
14 .to(Casino.class, INCOMING_FUNDS);

_
w

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 19/19

Casino case study: problem (4 data)

Operator

Operator purse: O ®

Operator purse: 100

- Casino balance: 100 >
l Casino balance: -50
! Will withdraw: 100 X
. Will withdraw: 100
S
=
3
&,
RUNN Actual balance: 50
S
. Casino ® v
“» Casino balance: 50 » Casino balance: -50

Bliudze et al.

JavaBIP meets VerCors

March 30th, 2023

19/19

VerCors vs. JavaBIP

VerCors
Strong points:

m Analyze data

m No assumptions

Weak points:
m Only local analysis

m No partial analysis

JavaBIP
Strong points:

m Design system-wide behaviour

m Partial execution

Weak points:
m Little data reasoning

m Assumptions

JavaBIP meets VerCors March 30th, 2023 19/19

Bliudze et al.

Verified JavaBIP: implementation

m In VerCors:
Parse Verified JavaBIP annotations
Encode contracts using JavaBIP semantics into COL
Verify COL program
Translate back any errors to input
Produce verification report
m In the JavaBIP engine:

Parse Verified JavaBIP annotations
If supplied, import verification report
Runtime verification

m Check non-verified properties at points of interest

Bliudze et al. JavaBIP meets VerCors March 30th, 2023 19/19

	Model-based coordination framework: JavaBIP
	Deductive verification: VerCors
	JavaBIP + VerCors = Verified JavaBIP
	Casino case study

